THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS MATH3070 (Second Term, 2015–2016) Introduction to Topology Exercise 7 Product

Remarks

Many of these exercises are adopted from the textbooks (Davis or Munkres). You are suggested to work more from the textbooks or other relevant books.

- 1. Show that the relative topology (induced topology) is "transitive" in some sense. That is for $A \subset B \subset (X, \mathfrak{T})$, the topology of A induced indirectly from B is the same as the one directly induced from X.
- 2. Let $A \subset (X, \mathfrak{T})$ be given the induced topology $\mathfrak{T}|_A$ and $B \subset A$. Guess and prove the relation between $\operatorname{Int}_A(B)$ and $\operatorname{Int}_X(B)$ which are the interior wrt to $\mathfrak{T}|_A$ and \mathfrak{T} . Do the similar thing for closures.
- 3. Let $A \subset (X, \mathfrak{T})$ be given a topology \mathfrak{T}_A . Formulate a condition for \mathfrak{T}_A being the induced topology in terms of the inclusion mapping $\iota \colon A \hookrightarrow X$.
- 4. Let $Y \subset (X, \mathfrak{T})$ be a closed set which is given the induced topology. If $A \subset Y$ is closed in $(Y, \mathfrak{T}|_Y)$, show that A is also closed in (X, \mathfrak{T}) .
- 5. Let $X \times X$ be given the product topology of (X, \mathfrak{T}) . Show that $D = \{(x, x) : x \in X\}$ as a subspace of $X \times X$ is homeomorphic to X.
- 6. Let Y be a subspace of (X, \mathfrak{T}) , i.e., with the induced topology and $f: X \to Z$ be continuous. Is the restriction $f|_Y: Y \to Z$ continuous?
- 7. Show that $(X \times Y) \times Z$ is homeomorphic to $X \times (Y \times Z)$ wrt product topologies.
- 8. Let $X_1 \times X_2$ be given the product topology. Show that the mappings $\pi_j: X_1 \times X_2 \to X_j$, j = 1, 2, are open and continuous.

Moreover, let \mathfrak{T}^* be a topology on $X_1 \times X_2$ such that both mappings

$$\pi_j: (X_1 \times X_2, \mathfrak{T}^*) \rightarrow (X_j, \mathfrak{T}_j), \quad j = 1, 2,$$

are continuous. What is the relation between \mathfrak{T}^* and the product topology?

9. Given any topological space Y and product space $X_1 \times X_2$, a mapping $f: Y \to X_1 \times X_2$ is continuous if and only if $\pi_j \circ f$, j = 1, 2, are continuous.

If \mathfrak{T}^* is a topology on $X_1 \times X_2$ with the same property, then \mathfrak{T}^* is the product topology.